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lytically evaluating the concept, a brief study is presented of the sea return as seen by a radar
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Part I contains a theoretical treatment based on the work of Kodis and Barrick. Neglect-
ing multiple scattering effects and assuming that the radius of curvature of the surface as well
as the rms roughness height of the surface are both larger than three radar wavelength
Kodis showed that the scattering cross section of the rough surface consists of the linear sum
of the scattering cross sections of the individual specular points lying in the illuminated area
of the surface. Using the specular point model of Kodis, Barrick derived an expression for
the backscattering cross section per unit area of a rough surface with a Gauwsi slope dis-
tribution. Barrick's expression for a0 involves the mean square slope of the random surface,
the angle of incidence of the plane wave of illumination, and the Fresnel reflection coefficient
of the surface for normal incidence.

The formula of Barrick, derived for a plane wave, also applies to the case of a narrow-
beam radar above the sea, provided that certain restrictions on the magnitudes of angle of
incidence of the radar beam, the beamwidth, and the mean square slope of the sea surface
hold. Using Barrick's formula for a0 and data from Cox and Munk relating the mean square
slope of the sea to wind speed, curves are drawn showing or as a function of wind velocity
near normal incidence and a vs angle of incidence for various sea conditions. Contours are
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also plotted for a° values 3, 6, and 10 dB down from maximum for radar
vs wind velocity.

angle of incidence

Part II applies the statistics of the Schooley measurements to the same problem of cal-
culating a 0

°. The Schooley data take the form of two distributionsm (a) the probability density
of facet inclination angles and (b) the distribution of average facet length vs facet inclination
angles and wind velocity. Using these data and assuming a facet model based on diffraction
theory, calculations are made of c0 for radars at X = 1, 3, and 10 cm vs wind velocity.
These curves show a remarkable-similarity -to -those -of Part I-despie-the rather disparate
models. Curves are also shown of the same nature as in Part I for X = 3 cm only; however,
there is a difference in the results between radars looking upwind and downwind, This comes
from the Schooley data which comprise a one-dimensional cut along the direction of the wind.
The facet model also shows a frequency dependence arising from the diffraction effects.

The two sea models examined in this report do not agree in quantitative detail, but there
are many striking simiflarities considering the very different models. Further experimental
measurements at normal and near-normal incidence would be required to confirm the theo-
retical values of the deviation of the angle of incidence of the radar beam off vertical neces-
sary to reduce aO in level by 3, 6, or 10 dB for various sea conditions.
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ABSTRACT

Recently, interest has been manifested in using the sea return observed
by an airborne radar as a possible continuous monitor of the condition of the
sea surface. As a step in analytically evaluating the concept, a brief study
is presented of the sea return as seen by a radar viewing the sea at near-
normal incidence.

Part I contains a theoretical treatment based on the work of Kodis and
Barrick. Neglecting multiple scattering effects and assuming that the radius
of curvature of the surface as well as the rms roughness height of the sur-
face are both larger than three radar wavelengths, Kodis showed that the
scattering cross section of the rough surface consists of the linear sum of
the scattering cross sections of the individual specular points lying in the
illuminated area of the surface. Using the specular point model of Kodis,
Barrick derived an expression for the backscattering cross section per unit
area of a rough surface with a Gaussian slope distribution. Barrick's ex-
pression for a0 involves the mean square slope of the random surface, the
angle of incidence of the plane wave of illumination, and the Fresnel reflec-
tion coefficient of the surface for normal incidence.

The formula of Barrick, derived for a plane wave, also applies to the
case of a narrow-beam radar above the sea, provided that certain restric-
tions on the magnitudes of angle of incidence of the radar beam, the beam-
width, and the mean square slope of the sea surface hold, Using Barrick's
formula for a0 and data from Cox and Munk relating the mean square slope
of the sea to wind speed, curves are drawn showing D as a function of wind
velocity near normal incidence and Mr0 vs angle of incidence for various sea
conditions. Contours are also plotted for ar values 3, 6, and 10 dB down
from maximum for radar angle of incidence vs wind velocity.

Part 1I applies the statistics of the Schooley measurements to the same
problem of calculating ! . The Schooley data take the form of two distribu-
tions: (a) the probability density of facet inclination angles and (b) the dis-
tribution of average facet length vs facet inclination angles and wind velocity.
Using these data and assuming a facet model based on diffraction theory,
calculations are made of a0 for radars at x = 1, 3, and 10 cm vs wind ve-
locity. These curves show a remarkable similarity to those of Part I despite
the rather disparate models. Curves are also shown of the same nature as
in Part I for A = 3 cm only; however, there is a difference in the results
between radars looking upwind and downwind. This comes from the Schooley
data which comprise a one-dimensional cut along the direction of the wind.
The facet model also shows a frequency dependence arising from the diffrac-
tion effects.

The two sea models examined in this report do not agree in quantitative
detail, but there are many striking similarities considering the very differ-
ent models. Further experimental measurements at normal and near-normal
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incidence would be required to confirm the theoretical values of the deviation
of the angle of incidence of the radar beam off vertical necessary to reduce
a0 in level by 3, 6, or 10 dB for various sea conditions.

PROBLEM STATUS

This is a final report on one phase of the problem.

AUTHORIZATION

NRL Problem R02-54
Project RF 05-151-402-4010

Manuscript submitted October 15, 1969.

iii

.: ..... ;:;: : : :
. s �;:.;-. . .. : ... :::.; ..

I



A STUDY OF SEA RETURN AT NORMAL
AND NEAR-NORMAL INCIDENCE

INTRODUCTION

This report is divided into two parts. Part I contains a theoretical study of the sea
return that could be expected from an airborne radar looking at the sea at normal and
near-normal incidence. Part U contains the results of applying the Schooley (1) facet
model and his measurements of clutter to the same problem.

PART I-THEORETICAL STUDY OF Ar° NEAR
NORMAL INCIDENCE

Background

In a recent paper, Kodis (2) treats the problem of electromagnetic scattering from a
rough surface. Beginning with an exact integral equation for the far-field scatter, Kodis'
derivation differs from the approaches used by others (3-6) in that the physical optics
integral is evaluated (by the method of stationary phase) before averaging over an en-
semble of surfaces instead of afterwards. This approach sheds light on the physical
mechanism responsible for the scattered field. In particular, Kodis' result shows that
to the first approximation the average backscattering cross section per unit area of a
perfectly conducting rough surface is

a = -(ha (E r rj), (1)

where Kft is the average number of specular points per unit area of the surface, and
(l 1 r 21) equals the average absolute value of the product of the principal radii of curva-
ture at the illuminated specular points.

The validity of Eq. (1) is subject to the following restrictions:

1. The radius of curvature of the surface is everywhere greater than three wave-
lengths of the incident radiation. This condition implies that diffraction effects may be
neglected.

2. Multiple scattering between various parts of the surface is neglected.

3. The rms roughness height of the surface exceeds three wavelengths of the inci-
dent radiation. This condition allows one to sum linearly the scattering cross sections
of the individual specular points lying in the illuminated area of the surface to form the
radar cross section of the illuminated area without regard to the phase relations between
the backscattered fields of the specular points. However, this restriction prohibits the
consideration of capillaries as reflectors.

In Kodis' theoretical model the rough, perfectly conducting surface was illuminated
by a plane electromagnetic wave incident in free space above the scattering surface, the
mean plane of which was horizontal.

1
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SLEDGE AND GEORGE

Equation (1) has a few interesting features. In the first place, it shows that the radar
cross section of a specular point is equal to the geometric-optics cross section of a
sphere whose radius is the geometrical mean of the principal radii of curvature at the
specular points. Secondly, the dependence on the angle of incidence is implicit in (Nv),
since (I r1 r2 i) is probably not a very sensitive function of this angle. It seems clear
that the number of specular points is near a maximum at normal incidence and decreases
as the angle of incidence increases.

To carry out backscattering calculation with Eq. (1), the statistics of the surface
must be specified and a study made of how these are related to the average number of
illuminated specular points per unit area and (! r I r 2 1) at the specular points. Recently,
Barrick (7) performed this operation for a random, finitely conducting surface with a
Gaussian distribution of surface height. Barrick finds that the radar cross section per
unit area of the Gaussian surface, based on Eq. (1), is

a0 = _ _2_ exp (-tan2o 1i/s) lR (O)j (2)

where R. (0) is the Fresnel reflection coefficient of the space-to-surface interface for
normal incidence, s2 is the mean square slope of the rough surface, and a i is the angle
of incidence of the illuminating uniform plane wave measured with respect to the normal
to the mean plane of the random surface. Although Barrick makes a statistical approxi-
mation in his derivation leading to Eq. (2) which is difficult to justify, his result is in
agreement with the work of others, in particular Hagors (4).

The purpose of Part I of this report is to investigate the radar cross section per
unit area of the sea surface as viewed by an airborne, narrow-beam radar using the
theories of Kodis and Barrick cited above.

Theoretical Model

Figure 1 shows the narrow-beam radar lying in the yz plane above the sea, the
mean plane of which is the xy plane. It is assumed that the roughness height of the sea
surface has a Gaussian distribution. Further, we assume that restrictions 1, 2, and 3

Fig. 1 - Geometry of the problem

2
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placed on the model of Kodis hold. It follows from Eq. (2) that the radar cross section
of the illuminated area of the sea surface whose projection on the mean plane is the
cross-hatched circular area of Fig. I can be expressed approximately in the form of the
following surface integral:

a, I R l? 1 , e~ exp (_tan 2y/&-I)cd9p dp,
a I~~~~~T

(3)

where

Po = h0 sec a tan 00 = radius of circular projected illuminated area

ho = height of radar above the sea

a = angle of incidence of radar beam

y = local angle of incidence to the mean plane of the sea surface at p (p, k )in the
mean plane.

The angle a. corresponds to the 0.1-power point on the major lobe of the axially sym-
metrical radiation pattern of the radar antenna.

It is easily shown from Fig. 1 that

tan2y = (p/ho)2 + tan2 a + 2 (p/ho) tan a sin t. (4)

Upon introducing Eq. (4), Eq. (3) can be written in the form

= I_ iR (0) 12 sec 4 a exp (-tan2 a/'2? f( u exp [- u2/S2] e c d,

C0 a= (Ics (1)
ih2 sec 2 a tan2 0 

<(I cos (31) R (0)12

r2 77 tan 2 00

sec2 a exp ( tan2 a/S2)fV
0

where

1 = [CI2 + 2C Cl sin 0 + Cs sin 2 t3exp [ _Q° tan a sin ck dq5

CO = 1 + (p/h 0 ) 2/sec 2 a

C1 = 2 (p/h) tan a/sec 2 a

(5)

u exp (-u2/S2) e, dt,

u = p/h 0

U0 = polho

(6)

3



SLEDGE AND GEORGE

Using the Fourier series representation,

exp(xcos j/5 = 1 (x) + 2 E In(c) cos n 8. (7)

where I"n (x) is the nrth-order, modified Bessel function of the first kind. Letting
i= (- (7/2), the definite integral C1 becomes

I= 2rf[(t2 + C21/2) I(x) - 2C0C1C1(x) + C2 /2 12 (x)], (8)

where x = 1 2(p/h0 ) tan a] /i2 , With the recurrence relation

I2(x) = () 1 (X) + '0(X),

we can eliminate .1 2 (x) from Eq. (8), so that our formula for eI becomes

El = 2u [C2 + C2 C IQ) C(2C 0 + C /x) II (x)] (10

To evaluate the remaining integral in u , we Emit u/2P to values less than 1/10.
Under these conditions, we may closely approximate the exponential function appearing
in the integrand of Eq. (5) by the first two terms of its power series representation.
Using the relation

f, x' _In(x) dx = Zn I(z)

with Eq. (9) and integrating by parts finally results in the following approximate expres-
sion for a

15 exp (-tan 2 / tan2 (1)
{nh 2 IRS(042 sec aa 0] ,(2

which holds for U2/S2 < 0.1, here

(1+ A) Ž ( II() 4m (mA + B) 12 (1) (13)

and

A = 2 (1 + 2 sin 2 a)- _/S2
sec 2 a

B tan a (2 + 82/sec2 a)
sec a

t sec a tan

- 2
m = taa

4



NRL REPORT 7005 5

The illuminated area of the sea projected onto the mean plane of the sea* is simply
7h2 sac2 a tan 2

0 ; hence the average radar cross section per unit area of the sea, can
be approximated by the expression

or, (ICos ,1

rho seC2 a tan 2 00

aO = <Icos P1> -I 2 sec4 a exp tan 2 ai/2) [t2/&T C o1i] (14)

The quantity Ki cos P j) is the average absolute value of the cosine of the angle which the
plane tangent to the surface makes with the mean plane of the surface.

A comparison of Eq. (14) with Eq. (2) shows that our formula for ae is simply the
Barrick's formula modified by the factor K (I Co s j

If we limit the argument of the modified Bessel functions to values less than unity
and approximate the Bessel functions appearing in K by the first two terms of their re-
spective power series representations, the following formula for K results:

Kz I+ tan2 2 cos 2 a- 2M sin 2 a

( M= tan2 00)[ 1 I - 2 sin2 a
S2 cos 2 a 2S2 cos 2 a JJ

where N = (tan 2 a)/s 2 and

(15)
U02

_ < 0. 1.
52

In Fig. 2 we present (K - 1) plotted vs a for the case where 2 = 0.02 and 00 10.04
radian.

To relate to practical radar antennas, we give the following example. For ?
greater than 0.02, the radar antenna gain must exceed 37 dB or the half-power beam-
width must be less than 2.6 degrees in order to meet the restriction placed on Eq. (14).
These figures assume a typical radar antenna with a pencil beam and a 10-dB tapered
illumination. For the assumed antenna, o0 turns out to be 0.90 of the half-power beam-
width. To satisfy the additional restriction placed on Eq. (15), the angle of incidence of
the radar beam a should be 13 degrees or less.

*In arriving at the illuminated area, the side lobes of the radiation pattern are neglected and the
main beam is assumed nearly axially symmetrical.
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0,06 

0.04 

0.02 

Fig. 2 - A plot of (K - 1) vs angle of incidence
O-_____ -_for s2 = 0.02 and 00 0.04 radian

3.044

-.oc I I -1.-
0 2 4 8 S IC 12 -14

ANGLE OF INCIDENCE OF RADAR BEAM (DEGREES)

A study of Eq. (15) reveals that K differs from unity by less than 5 percent, provided

(j0) tan - jI < O. 10 (16)

In the appendix, we consider the limiting case of normal incidence. Starting with
Eq. (5), the integral therein is evaluated without the use of approximation. At normal In-
cidence the radar cross section per unit area of the sea becomes

_ (jcos ,3f>1R (0)t2 [t 1 + 252 + 2 ()2)

-(sec 9 + 252 sec 2 0 + 2 exp ( tan2 fo/ )J. (17)

Unlike Eq. (14), the above expression for vO is not subject to the beamwldth restriction
us/2P < 0.1. Equation (17) holds for very calm seas, provided the radiation wavelength
is reduced as the sea surface becomes more calm so as to keep the rms roughness
height three or more wavelengths.

Calculated Results

In arriving at the calculated results presented in Part I of this report, we shall use
Eq. (14) with both (1 coP pi) and K assigned the value of unity. These approximations
introduce only a fraction of a decibel error in a , provided that the wind speed is less
than 30 knots and that the restrictions on Eq. (15) and the condition Eq. (16) remain valid.
For example, if -&2 = 0.02 and tan 0, = 0.017, the restrictions on Eqs. (15) and (16) hold
for any angle of incidence of the radar beam a less than 20 degrees. It is estimated
from Schooley's data that (i cos pi) is about 0.96 at a 30-knot wind speed. The value
used for JRS(o)l 2 in our calculations is 0.65, which is correct for water at radar wave-
lengths extending from 0.5 to 10 cm.

6



NRL REPORT 7005 7

In Fig. 3 we present a graph showing the relationship between the mean square slope
of the sea surface and the wind speed. The linear graph represents the average of many
experimental measurements of S2 made at optical wavelengths by Cox and): Mi (8) who
unfortunately did not state the degree to which the sea was developed under the'infludence
of the wind. The wind speed was measured at a point 41 ft above the mean level otthie
sea. In the remaining figures where wind speed appears, the relationship shown in Fig. 3
is used in its derivation.

wU
LI-

La
CLc0~
v)

L'U

cc21a
wY

Fig. 3 - The mean square slope of the sea
surface as a function of wind velocity (8)

0.1 _

2108 
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2.02

0 5 iD 15 20 25 30

WIND VELOCITY (KNOTS}:

In Fig. 4 we show u0 in decibels as a function of wind velocity for various angles of
incidence of the radar beam. The small crosses represent data points calculatedi' for an
angle of incidence of 2 degrees. It is observed from Fig. 4 that the angle of incidence
should be kept to within a tolerance of ±3 degrees of normal for 0 to be used as a :sat-
isfactory measure of the wind speed.

14
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5 Io 15 20 25 30 35

WIND VELOCITY (KNOTS)

Fig. 4 - The radar cross section per unit area
of the sea (in decibels) as a function of wind
velocity for angles of incidence of the radar
beam of 0, 5, 10, and 15 degrees
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SLEDGE AND GEORGE

In Fig. 5 we present u° in decibels plotted vs the angle of incidence of the radar
beam for several constant values of the mean square slope of the sea surface P. A
comparison is shown of the theoretical results and the experimental measurements ofa°
made by Grant and Yaplee (9) at a radar wavelength of 8.6 mm with a half-power beam-
width of 2.4 degrees. The comparison reveals that the graph of Fig. 5 corresponding to
a wind speed of 14.6 knots agrees with the results of Grant and Yaplee to within 0.8 dB.
At a wind speed of 22.5 knots, the experimental values of o0 appear to be 1,2 to 1.8 dB
higher than the theoretical values at each angle of beam incidence extending from 0 to 22
degrees. At the lower wind speed of 7 knots, it is found that the level of a0 at vertical
incidence calculated from the theory of Part I is 1 dB below the experimental value
(16 dE). At this lower wind speed, the experimental values of &' decrease much more
rapidly with the angle of incidence than the theoretical values of enA. The value of o"
reaches 0 dB at a beam incidence of 10 degrees in the experimental results, while in the
theoretical results this level of IJ0 is not attained until the beam incidence angle becomes
15 degrees. As the wavelength increases, the theoretical and experimental results are
separated by wider margins. One reason for this divergence may be that the relationship
between S3 and wind speed used here was obtained from optical measurements.

'20-02 t'1CK40T5

EXPERIMENTAL DATA
14 

0
- 7-KNOT WIND

X- 14.X_ -NOYT WAn

12 0IH 4 1146 KNO1I 22.5-K40T WND

1ci ~'0D8 i26Hfibr ,

4

0 2 4 6 8 10 12 14 16 is 20 22
ANGLE OF iNViENE OF SADAR BEAM 1662REES1

Fig. 5 - The radar cross section per unit area of the
sea {in decibels) plotted vs the angle of incidence of
the radar beam for several values of P

It is apparent from Fig. 5 that the angle of incidence corresponding to a point 3 dB
down from the a° level at normal incidence (a = o) becomes progressively smaller as
S2 decreases or as the sea becomes calmer. This suggests that one might use the angle
of incidence at the -3 dB points as a measure of the roughness of the sea or of the wind
velocity. This measure of wind speed or sea roughness has the advantage of being inde-
pendent of the absolute level of a°. From the curves of Fig. 5, we determined the angle
of incidence at the points where a0 is 3p 6, and 10 dB down relative to the uO level at
normal incidence for each value of 52,. The results appear in the form of the linear
graphs shown in Fig. 6, plotted on logarithmic coordinate scales. From the essentially
parallel linear graphs of Fig. 6, one can easily show that the graphs can be represented
quite well by the following empirical formulas:

8
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Fig. 6 - The angle of incidence at a given value of s 2

necessary to maintain aO at a constant level of N dB
relative to the cr at normal incidence; N = -3, -6, and
-10
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(20)

In Fig. 7 we present graphs similar to those of Fig. 6, except that in this figure the
angle of incidence corresponding to a given number of decibels down from the o4 level
at normal incidence is plotted vs the wind speed. Any one of these curves can serve as a
measure of the wind velocity or of the roughness of the sea surface.
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Fig. 7 - The angle of incidence at a given wind
velocity necessary to maintain u0 at a constant
level of N dB relative to a at normal incidence;
N = -3, -6, and -10
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SLEDGE AND GEORGE

At the steep angles of the wave paths through the troposphere used in this problem,
the error introduced by refraction is negligible. At great radar heights above the sea, It
becomes necessary to take into account the curvature of the earth in the determination
of the angle of incidence of the radar beam at the sea surface corresponding to the angle
of the beam off vertical at the radar site.

PART Il-STUDY OF rNEAR NORMAL INCIDENCE USING
SCHOOLEY FACET MODEL

Background

The data of Schooley (1) published in 1962 on the statistics of wind-disturbed water
waves using the facet concept provide at least one experimental model upon which a study
of 70 at near normal incidence can be undertaken. Without attempting to justify the facet
model, suffice it to say that the upwind-downwind ratios reported by Schooley did tend to
be substantiated to some extent by the available sea data. In this second part of this re-
port the purpose is to use the Schooley statistics applied to the calculation of af vs ra-
dar wavelength and wind velocity at normal incidence and at angles from normal up to no
greater than 40 degrees. The study will consider the same factors affecting a° as did
the theoretical analysis in Part L The results show remarkable similarities despite the
fact that the models are rather disparate.

Calculations of aO at Normal Incidence

The Schooley data take the form of two distributions: (a) the probability density of
facet inclination angles and (b) the distribution of average facet length vs facet inclina-
tion angle and wind velocity. In Fig. B a typical inclination-angle density curve is shown
for a 10-knot wind. Similar curves also exist for 15- and 20-knot winds. In Fig. 9 a
typical set of facet curves is shown for a radar wavelength of x = 3 cm and 10-, 15-,
and 20-knot winds. Curves also exist for A =1, 5, and 10 cm, It should be noted that
the probability density curves are not Gaussian, although they do look somewhat bell
shaped. These are one-dimensional cuts in the direction of the wind and are thus skewed.
Also the tails are unsymmetrical. In computing a° using the facet model, it is assumed

0.070 1 1 I I 4 I I I I 1

0060 _ +10-KNOT WINDN

0MO -

I-~~~~WN

F 0040_I 

D0030- 

0.0 20- DIRECTION
a

-50 -40 -30 -20 -10 0 JO 20 30 40 50
FACET NCLNATION ANGLE a (DEGREES)

Fig. 8 - Probability density of facet
inclination angles for a 10-knot wind
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C I I I I
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FACET INCLINATION ANGLE a (DEGREES)

11

50

Fig. 9 - Distributionofaverage facet lengths at a
radar wavelength of A = 3 cm for wind velocities
of 10, 15, and 20 knots

that the facets are flat circular disks of diameter given by the Schooley average facet
length. The effective radar scattering area A is determined from the actual area A
and the a/A ratio, where a is the facet radius, by using the theoretical curve of Schmitt
(10) also reproduced by Schooley (1). In computing v0, the total expected radar return
from the scatterers e is obtained by summing over the facet inclination-angleprobahbility
densities as follows:

, =52 p (a) (A )iIRs(0)2, (21)
over (1
all
facets

where p (a.) is the probability density of the facet angles of inclination a, and:I R(O.) 2
as defined in Part I is taken to be 0.65. To calculate the effective area illuminatedlby
the radar beam, we use

Aill = E p (a,) A, cos a,. (22)
over
all
facets

which gives the projected area of the beam on the mean surface level of the sea. The
value of eo is then obtained from

go = /AiII- (23)

The results of these calculations are shown for normal incidence in Fig.l10. .:o The limited
data available permit only three values of wind velocity to be plotted. The cu;es show
moderate variations of aO with wavelength at the lower wind velocities; all show the ex-
pected decrease in a' as the wind velocity increases. The curve obtained.in Part I \Ksing
the specular point model is superimposed for comparison. The similarity isB strikg.
The agreement of u0 values is closer than expected for such diverse models." '
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Calculations of aO Near Normal Incidence

In order to compare the facet model with the specular point model of Part I, calcu-
lations are made of L, for angles of incidence off the normal. One requirement here is
the determination of the radiation pattern from the facets to establish whether or not the
scattered energy is seen by the radar. The half-power beamwtdth of the main lobe from
a flat circular disk is given by Silver (11) as

0 - 2 sin- (0.51 (24)

where b = 2a is the diameter of the facet.

To simplify the calculations, it is assumed that if the radar beam lies within these
half-power points, then all scattered energy from the facet is returned to the radar,
whereas in cases where the radar beam is outside the half-power points none of the re-
radiation is seen by the radar. The geometry for a radar looking upwind is shown in
Fig. 11, from which we have the condition for full backscatter,

Y< + a). (25)

The corresponding geometry for a radar looking downwind is shown in Fig. 12, from
which the condition for full backscatter is

y < ( -). (26)

The results of calculations at x = 3 cm only are presented in Fig. 13, showing the
effect of wind velocity on a° with respect to the radar angle of incidence. It is noted
that, as in Part I, the maximum value of e0 is greater and the slope is steeper for the
lower wind velocities. Further, these curves show a difference in clutter return between
a radar looking upwind and one looking downwind. The reason for this is the unsymmet-
rical and skewed slope probability distribution in the measured data. Such a difference
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I8 a r--- 
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was not present in the theory of Part I because of the Gaussian assumption for wave
slope density. Also, it should be remembered that the analysis in Part I is two-
dimensional and the Schooley data used in Part 1I are only one-dimensional.

In Fig. 11 the points where or" is 3 and 6 dB down from maximum are indicated by
arrows. Extracting these points in separate plots produces curves similar to Fig. 7 of
Part I. Curves for the upwind -0 differences with angle of incidence vs wind velocity
are in Fig. 14, and curves for the downwind differences are in Fig. 15. In order to plot
these curves vs the mean square slope 82, calculations with the Schooley data were
made using the formula

S2 - Cia - [E2an 4 pa . (2')

A plot of this relationship, which is independent of frequency, is shown in Fig. 16. With
this curve, the differences of Figs. 14 and 15 can be plotted vs 82 and are shown in Figs.
17 and 18. A comparison at the -3 dB level with Fig. 6 in Part I reveals the same type
of straight-line curve with positive slope. However, the slope is far less in the specular
point theoretical model than it is in the measured facet model.
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DS - .- - - -- - - - - - - 42 x~~~~~~~ = 3 cm
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Fig. 14 - Upwind contours at the Fig. 15 - Downwind contours at the
-3 and -6 dB levels showing radar -3 and -6 dB levels showing radar
angle of incidence vs wind velocity angle of incidence vs wind velocity

A COMPARISON OF THE SPECULAR POINT AND
SCHOOLEY FACET MODELS

The specular point model of Kodis takes into account the relative phases of the back-
scattered fields from the many elementary areas of the illuminated surface of the sea in
the derivation of the radar cross section of the sea. According to Kodis, because of the
random nature of the surface and as a result of the roughness vs wavelength restriction,
contributions from the interaction of pairs of specular points tend to cancel. In this
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model the sea is treated as a two-dimensional random surface with a Gaussian probabil-
ity distribution of surface slope. The sea is considered isotropic, that is the wave.mo-
tion has no preferred direction. The specular point model utilizes the usual physical
optics approximations that make a0 independent of frequency and polarization. The
shorter the radar wavelength, the more accurate the approximations become.

The Schooley facet model is a one-dimensional model wherein the radar cross sec-
tion of the sea represents the sum of the cross sections of the individual facets of the
surface independent of the phase relations between the backscattered field components of
the facets. The angles of inclination of the facets possess a non-Gaussian probability
distribution function such as the one shown in Fig. 8. The somewhat bell-shaped proba-
bility density curves represent one-dimensional cuts in the direction of the wind and thus
exhibit skewness and asymmetry. In the facet model an attempt is made to account, for
the diffraction effects of the facets of the sea surface. The frequency dependence ex-
hibited by the facet model comes about from the diffraction effects.

The Schooley facet model uses two sets of measured data: (a) the probability density
of facet angles of inclination with wind speed as the parameter, and (b) the curves of av-
erage facet length vs facet angle of inclination. Since the second set of curves is obtained
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by averaging, sometimes over a very limited sample, the results are subject to some
inaccuracies. No doubt this is a factor entering into the somewhat different so charac-
teristics exhibited by the two models considered in this report.

In the facet model, both large- and small-scale roughness of the sea surface are
taken into account in arriving at co . In the specular point model, only the large-scale
roughness of the sea surface affects 70 . Areas of the sea surface oriented normal to
the line of sight are responsible for the backscattered power in the case of large-scale
roughness; hence, this component dominates the radar cross section of the sea in the
vicinity of normal incidence.

CONCLUSIONS

It is shown in Part I that the radar cross section per unit area of the sea is given
approximately by the same formula as the one Barrick derived for a plane wave incident
on the sea surface provided the inequalities appearing in Eqs. (15) and (10) hold for any
combination of mean square slope of the sea surface, the antenna beam width, and the
angle of incidence of the antenna beam.

The theoretical values of So of Part I have been compared with the experimental
values determined by Grant and Yaplee. The agreement is found to be quite good at a
wavelength of 8.6 mm (on the order of 1- to 1.8-dB difference) and at wind speeds of 14
to 25 knots, but the agreement is much poorer for a wind speed of ? knots. This lack of
agreement should not have been unexpected, since the theory is based on a "rough" sur-
face and the basic assumptions on roughness appear to be violated as the wind speed di-
minishes. At longer wavelengths the experimental data departs by a greater margin
from the theoretical. This may be partly because the relationship between s2 and wind
speed used here was obtained from optical measurements.

The two sea return models described do not agree in quantitative detail, but there
are striking similarities. To confirm the theory, further experimental measurements of
the deviation of the angle of incidence of the radar beam off vertical necessary to reduce
a0 in level by 3 dB would be required under various sea conditions. It is possible that
this measure of radar sea return could be correlated with the character of the sea sur-
face as found by optical sensors and processing. The optical information characterizing
the surface of the sea could be correlated with the speed, fetch, and duration of the wind.

16
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Appendix

A MORE GENERAL EXPRESSION FOR a" AT NORMAL INCIDENCE

It turns out that an expression for the radar cross section per unit area of the sea
for normal incidence can be derived without the restrictions on the calmness of the sea
and the beamwidth of the radiation pattern of the radar antenna. Such restrictions were
used to develop the formula for uo for other than normal incidence, Eq. (14).

Beginning with Eq. (5) with a set equal to zero, we evaluate the integral by integrat-
ing twice by parts to obtain the following expression for the radar cross section of a cir-
cular illuminated area of the sea:

jRh l s(O) j 2 +2+ 2+ 2(TS2) ) (sec4 a t 2S2 S629 ± 2(52) 2)

exp (- tan2 oo)/sj , (Al)

where the radius of the illuminated area is h0 tan or,. The illuminated area of the sea
is i7h, tan2 OoK cos p) ; hence, a0 for norm alincidence is given by the expression

0
a.S

fhg2 tan 2 ajlcns p1)

a0 g 1R012( s |>n[(1 + 232 + 2(g2)) - (sec4 6o t 22 SeC2 00 + 2(52))

tx ( an1 29e/2 1 A
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